NIC Winter School 2006

Computational Nanoscience: Do it yourself!
(http://www.fz-juelich.de/conference/wscn)

14-26 Februar 2006

Forschungszentrum Juelich, Germany

Organizer:

- Stefan Blügel
 Institute for Solid State Research (IFF)
 Forschungszentrum Jülich GmbH
 D-52425 Jülich
 Germany
 Phone: +49 2461 61 4249
 Fax: +49 2461 61 2850
 Email: S.Bluegel@fz-juelich.de

- Johannes Grotendorst
 Central Institute for Applied Mathematics
 Forschungszentrum Jülich GmbH
 D-52425 Jülich
 Germany
 Phone: +49 2461 61 6585
 Fax: +49 2461 61 6656
 Email: J.Grotendorst@fz-juelich.de

- Dominik Marx
 Lehrstuhl fuer Theoretische Chemie
 Ruhr-Universitaet Bochum
 D-44780 Bochum
 Germany
 Phone: +49 234 32 26485
 Fax: +49 234 32 14045
 Email: dominik.marx@theochem.ruhr-uni-bochum.de

Scope and Aim of the School:

This hands-on NIC Winter School focuses on the application of modern electronic structure calculations and dynamical simulation techniques covering aspects of solid state and surface science, chemical reactions and dynamics, as well as the structure and properties of large molecules and clusters. The School will provide a practical introduction to the theory behind and handling of pertinent software packages through practicals and tutorials in small groups using four codes. The full-potential linearized augmented plane wave code FLEUR and the Korringa-Kohn-Rostocker Green function code KKR-GF, the ab initio (Car-Parrinello) molecular dynamics simulation package CPMD, and the highly efficient quantum chemistry code TURBOMOLE. Although very different in concept and application focus, all these codes are well-known prototypical representatives and are used in various supercomputer centres around the world.
This School about "electronic structure at work" is tailored for PhD students and Postdocs with a solid background in basic quantum mechanics coming from physics, chemistry, material science and related disciplines. The School combines lectures in the morning, which elucidate the theoretical concepts and numerical procedures, with practical sessions in the afternoon. Within these practicals, bridges will be built from simple test examples up to realistic research problems. It is the aim of this NIC Winter School that participants gain a broad but nevertheless deep understanding of what state-of-the-art electronic structure methods can currently achieve.

Format of the School:

It is a typical "hands-on-school" with lectures in the morning and tutorials in the afternoon sessions and weekend. We introduce 4 possible representative codes: FLAPW-code FLEUR, KKR-Greenfunction-Code, TURBOMOL-code, Car-Parrinello-code CPMD. Participants have to sign-up for one of them after the 1st day for the afternoon tutorials.

Participants:

The school aims at PhD students and young postdocs. It is limited to 40 participants.

Funding:

I would like to ask for funding from the ESF Psi_k Program to support mostly graduate students in exceptional cases also postdocs of our community in order to encourage their participation. We hope to offer at least 20 scholarships of 350 Euro to cover living expenses and 10 scholarships of 250 Euro for travel expenses. Therefore, we apply for a total amount of 9500 Euro.

We expect that the Forschungszentrum Juelich will contribute 20,000 Euro to cover the expenses of the invited speakers, the publication of the lecture notes, the local infrastructure, transportation between accommodation and laboratory and the computer infrastructure.

Tentative List of Teachers:

G. Bihlmayer (IFF,Juelich)
 - Non-Collinear Magnetism, Exchange Parameter and Tc

S. Blügel (IFF, Juelich)
 - The FLAPW Method

P.H. Dederichs (IFF, Juelich)
 - KKR-GF Method for Impurities, Clusters on Surfaces

N. Doltsinis (Theo. Chemistry, Bochum, Germany)
 - Advanced Sampling via Molecular Dynamics
 - Time-Dependent DFT
 - Molecular Dynamics Beyond the Adiabatic Approx.

Ch. Hättig (INT, Karlsruhe)
 - Beyond Hartree-Fock: MP2 and Coupled Cluster Methods
R.O. Jones (IFF, Juelich)
- Introduction to Density Functional Theory
- On Exchange Correlations Functionals (LDA and GGA)

B. Körfgen (ZAM, Juelich)
- Parallel Linear Algebra Methods

St. Kurth (FU-Berlin, Berlin)
- Beyond the Local Density Approximation:
- The Optimized Effective Potential Method and LDA+U

D. Marx (Theo. Chemistry, Bochum)
- Ab Initio Molecular Dynamics: Car-Parrinello and Born-Oppenheimer

Ph. Mavropoulos (IFF, Juelich)
- The KKR Green Function Method

B. Meyer (Theo. Chemistry, Bochum)
- Ab Initio Thermodynamics
- The Pseudo-Potential Plane Wave Approach

B. Mohr (ZAM, Juelich)
- Introduction to Parallel Computing

Th. Müller (ZAM, Juelich)
- Basis Sets, Accuracy, and Calibration in Quantum Chemistry

M. Scheffler (Fritz-Haber-Institut, Berlin)
- Ab initio Electronic Structure Calculations: Status and Challenges

A. Schindlmayr (IFF, Juelich)
- Many-Particle Perturbation Theory: GW and BSE

V. Staemmler (Theo. Chemistry, Bochum)
- Introduction to Hartree-Fock and CI Methods

G. Sutmann (ZAM, Juelich)
- Molecular Dynamics Simulations

D. Wortmann (IFF, Juelich)
- Ab Initio Transport

R. Zeller (IFF, Juelich)
- Spin-Polarized DFT Calculations and Magnetism
Preliminary Programme:

Tuesday
13:00 - 14:00 Registration
14:00 - 14:15 Opening Remarks / Richard Wagner and Organizer
14:15 - 15:15 Ab initio Electronic Structure Calculations / Matthias Scheffler
15:15 - 16:15 Introduction to Hartree-Fock and CI Methods / Volker Staemmler
16:15 - 16:45 Coffee
16:45 - 17:45 Introduction to Density Functional Theory / Robert O. Jones
18:00 - 20:00 Reception and get-together (ZB-Foyer)

Wednesday
9:00 - 10:00 The Pseudo-Potential Plane Wave Approach / Bernd Meyer
10:00 - 11:00 The FLAPW Method / Stefan Blügel
11:00 - 11:30 Coffee
11:30 - 12:30 Introduction to Parallel Computing / Bernd Mohr
12:30 - 14:00 Lunch
14:00 - 15:00 Parallel Linear Algebra Methods / Bernd Körfgen
15:00 - 18:00 Practical Session 1: Parallel Linear Algebra
 Coffee (ZAM Foyer)

Thursday
9:00 - 10:00 The KKR Green Function Method / Phivos Mavropoulos
10:00 - 11:00 Basis Sets, Accuracy, ... in Quant. Chem. / Thomas Müller
11:00 - 11:30 Coffee
11:30 - 12:30 Molecular Dynamics Simulations / Godehard Sutmann
12:30 - 14:00 Lunch
14:00 - 15:00 Ab Initio MD: CP and Born-Oppenheimer / Dominik Marx
15:00 - 18:00 Practical Session 2: Getting Familiar with the Codes
 Coffee (ZAM Foyer)

Friday
9:00 - 10:00 On Exchange Correlations Functionals / Robert Jones
10:00 - 11:00 Spin-Polarized DFT Calculations and Magn. / Rudolf Zeller
11:00 - 11:30 Coffee
11:30 - 12:30 Ab Initio Thermodynamics / Bernd Meyer
12:30 - 14:00 Lunch
14:00 - 18:00 Practical Session 3: Determining the Structure of Solids,
 Liquids, and Clusters
 Coffee (ZAM Foyer)
18:00 - 20:00 Poster Session (contribution from participants)

Saturday
9:00 - 18:00 Practical Session 4: Pick Your Favored Problem and
 Work on it
 Catered lunch

Sunday
9:00 - 18:00 Excursion
Monday
 9:00 - 10:00 Beyond HF: MP2 and Coupled Cluster Meth. / Christof Hättig
 10:00 - 11:00 Non-Coll. Magnetism: J_ij and Tc / Gustav Bihlmayer
 11:00 - 11:30 Coffee
 11:30 - 12:30 The KKR-GF Method for Impurities + Clusters / Peter H. Dederichs
 12:30 - 14:00 Lunch
 14:00 - 18:00 Practical Session 5: Computing Properties of Solids, Liquids, and Clusters
 Coffee (ZAM Foyer)

Tuesday
 9:00 - 10:00 Advanced Sampling via Molecular Dynamics / Nikos Doltsinis
 10:00 - 11:00 Time-Dependent DFT / Nikos Doltsinis
 11:00 - 11:30 Coffee
 11:30 - 12:30 Beyond the LDA: The OEP and LDA+U / Stefan Kurth
 12:30 - 14:00 Lunch
 14:00 - 18:00 Practical Session 6: Applications "à la Carte"
 Coffee (ZAM Foyer)

Wednesday
 9:00 - 10:00 MD Beyond the Adiabatic Approximation / Nikos Doltsinis
 10:00 - 11:00 Ab Initio Transport / Daniel Wortmann
 11:00 - 11:30 Coffee
 11:30 - 12:30 Many-Particle Perturbation Theory: GW,BSE / Arno Schindlmayr
 12:30 - 12:45 Closing Remarks: Stefan Blügel / Johannes Grotendorst / Dominik Marx
 12:30 - 14:00 Lunch