Maximally Localized Wannier Functions: Concepts, Applications, and Beyond

SCIENTIFIC ORGANIZERS

Nicola Marzari
marzari@mit.edu
Massachusetts Institute of Technology, Cambridge, USA

Alfredo Pasquarello (contact person)
alfredo.pasquarello@epfl.ch
EPF-Lausanne, Switzerland

Ivo Souza
isouza@berkeley.edu
University of California, Berkeley, USA

ABSTRACT

Maximally localized Wannier functions provide a representation of the electronic structure in terms of spatially localized functions which is particularly insightful. Since their introduction, these functions have found numerous applications in solid-state theory and in *ab-initio* simulation, in physics and in chemistry. More recently, these functions have grown into a methodological tool for the study of polarization, magnetism, strongly-correlated electrons, transport, and large-scale electronic systems. This workshop provides a forum where these novel ideas are confronted and shared across research fields.
SCIENTIFIC SUMMARY (1000 words)

The electronic structure of periodic systems is usually described in terms of the energy eigenfunctions, the Bloch functions, which are also eigenstates of the translation operator. However, these functions are spatially delocalized and offer a description which is not very intuitive. An alternative description of the electronic structure is provided by Maximally Localized Wannier Functions (MLWFs), which favor a representation of the electronic structure in terms of functions localized in real space [1,2]. These functions are obtained by unitary transformation from the energy eigenfunctions and therefore provide a fully equivalent description. Through their center, their extension and their shape, MLWFs provide a description of the electronic structure which is physically insightful. The electron orbitals can be visualized and located with respect to the positions of the atoms. Early investigations on complex crystals [2] and on disordered solids [3] and liquids [4] immediately illustrated the strength of this new concept. Essentially, a MLWF provides information on the local electronic structure in a straightforward and compact form.

Maximally localized Wannier functions are experiencing an increasing success as a monitoring tool of the electronic structure within both the electronic structure [5-9] and ab-initio molecular dynamics communities [10-12]. However, more recently, the particular properties of MLWFs have also attracted interest as a primary methodological tool within more complex theoretical developments. The most interesting aspect of MLWFs is that they allow a decomposition of the electronic structure in local components [1,2]. This property naturally allows one to locally monitor the response of the electronic structure when the investigated system is perturbed, either by the application of external (electric or magnetic) fields or by structural modification. In the study of the polarization, the usefulness of MLWFs is further enhanced by the fact that the displacement of their centers naturally connects with the modern definition of the polarization [1,2]. Hence MLWFs have become the method of choice to investigate the dielectric response in insulator-insulator [13-16] or insulator-metal interfaces [17]. Similarly, MLWFs have shown their usefulness in the study of the response of the electronic structure to a magnetic field [18-20]. These functions have been used in the calculation of NMR shifts [18], but have also turned out to be valuable in establishing the correct definition of the orbital magnetization in periodic systems [19,20]. Recent work on the interpretation of photoemission shifts at semiconductor surfaces and interfaces relies on MLWFs to highlight the role of strain fields [21].

Another exploited property of a set of MLWFs is that they constitute a complete basis set for the occupied states in which hierarchy can be established on the basis of distance to a particular point in space. This property is particularly useful for the introduction of approximations in which role of the local electronic structure is prioritized. Such basis functions have found a natural application in the development of methodologies for large-scale electronic calculations [22,23]. Recent developments also concern the research area of strongly correlated electrons, where MLWFs have recently been introduced as preferred functions for describing the local correlation [24-31].

Maximally localized Wannier functions have also found application in the construction of simplified Hamiltonians for multi-scale approaches. In this case, one uses the property that MLWFs can represent a particular energy window. This is straightforward when the relevant electronic bands are well separated from the other ones, but recent developments have extended such applications also to coupled bands introducing purposely designed
disentanglement procedures [32-35]. In particular, these methodological developments are at the basis of several successful applications in the context of transport in nano-sized structures [36-38].

Although most of the early applications of MLWFs were to insulating systems, very recently the usefulness of partially-occupied MLWFs as fast and accurate interpolators for describing Fermi-surface properties of metals has been explored. For example, this has been used to reduce dramatically the computational load needed to evaluate properties such as the anomalous Hall effect of ferromagnets [39] and the electron-phonon coupling [40]. A further recent extension has shown that generalized Wannier functions can be constructed which show small spreads both in space and in energy [41].

The raise of interest in MLWFs has also prompted theoretical work in order to complete the characterization of these functions. Very recent work has been able to demonstrate the exponential nature of the localization [42], extending to three dimensions previous work for one dimension [43]. Furthermore, the real nature of MLWFs, empirically observed in many applications, could be formally demonstrated [42]. The wide-spread use of MLWFs in the ab initio simulation community has also led to the development of molecular dynamics integrators which preserve the localization properties during the course of the evolution [44-46].

A computer module for the generation of MLWFs is freely available [47] and facilitates their wide-spread use across the electronic-structure community. The success of MLWFs has brought several major software packages, such as DACAPO, CPMD and QUANTUM-ESPRESSO, to offer to their users a module for their generation. From the technical point of view, there have been important evolutions in the algorithms that are used to generate MLWFs [48-51].

Finally, it should be mentioned that the concept of MLWF has acquired generality giving rise to applications which extend beyond the description of the electronic structure. For instance, the concept has been used in the context of photonic crystals [52] and recent work shows how generalized Wannier functions can be used to study phonon Hamiltonians [41,40].

As clearly illustrated by this evolution, the use of MLWFs is rapidly expanding across diverse research areas. One of the primary aims of the present workshop is to bring together the major players in these different disciplines in order to share their experiences. These will include researchers in the electronic structure and ab initio simulation community, in physics and in chemistry. Researchers that are primarily interested in new developments and researchers that are more concerned with practical applications will be both represented. While the research areas are diverse, the optimal integration of MLWFs in broader schemes necessarily will face difficulties which are to a large extent common to all concerned research areas. The workshop represents a forum where researchers from various fields meet to expose their views, discuss their ideas, and confront their solutions. Furthermore the interaction between development and application will be beneficial to both parties leading to more focused developments on the one side, and to richer applications on the other.

The planned workshop is the very first one of this nature. The impact of the workshop is expected to be twofold. First, at this time it is not clear whether all the major researchers that have been identified in this proposal are fully aware of all the developments that are occurring
in parallel in other research areas. The workshop will therefore contribute in removing potential communication barriers. This will be beneficial to several research fields. Second, the workshop will promote the interaction between development and application. Eventually this will lead to the optimal exploitation of the concept of MLWFs in various contexts.

FORMAT

We are planning a three-day workshop with 28 participants, to be held at CECAM in Lyon. The workshop will cover all the main research areas in which maximally localized Wannier functions are currently having impact. We are planning to have 9 to 10 talks per day. The workshop will start with an overview talk that reviews the field at large, both the history and the state of the art, open problems, etc. David Vanderbilt kindly accepted to give such an opening talk. The other talks will then be grouped according to the following themes:

(i) **GENERAL THEORY AND ALGORITHMS**,
(ii) **POLARIZATION**,
(iii) **MAGNETISM AND SPIN-ORBIT EFFECTS**,
(iv) **STRONGLY CORRELATED ELECTRONS**,
(v) **TRANSPORT**,
(vi) **LARGE SCALE ELECTRONIC-STRUCTURE CALCULATIONS**, and
(vii) **APPLICATIONS**.

Each participant will be allotted 30 minutes and an indicative time schedule will be set up, in which the scheduled discussion time is approximately equivalent as the presentation time. Rather than enforcing a rigid schedule, the chairman of each session will be allowed to freely manage the discussion time available to his session following the interest of the audience.

PREFERRED DATES

27.06.2007 - 29.06.2007

BUDGET

- Living expenses for a three-day workshop with 28 participants
 28 people x 3 days x 90 EUR = 7560 EUR
- Traveling expenses of organizers
 Marzari Boston (400 EUR), Sousa San Francisco (700 EUR)
 Pasquarello Lausanne (100 EUR)
 1200 EUR
- Traveling expenses 12 participants (non-organizers) from USA
 12 people x 300 EUR = 3600 EUR
- social dinner
 28 people x 40 EUR = 1120 EUR
- coffee breaks
 6 breaks x 28 people x 2 EUR = 336 EUR

TOTAL
13816 EUR
SUPPORT

We are submitting this application, simultaneously to CECAM and ESF (Psi-k programme), seeking financial support for a joint CECAM/Psi-k workshop. The research area covered by our proposal is expanding rapidly both in Europe and in the United States, as appears clearly from the list of participants that we are proposing. In order to ensure that the main players in the field are optimally represented, we are therefore seeking funding from ESF through the Psi-k programme, in addition to the budget allocated by CECAM for a regular three-day workshop. This workshop proposal, which intends to bring together researchers from simulation and electronic structure, appears particularly suited to be announced as a joint CECAM-Psi-k workshop. We will also encourage the young participants from overseas to seek for additional funding through the NSF.

CURRICULA VITAE OF SCIENTIFIC ORGANIZERS

CV of Nicola Marzari

2005-to date Associate Professor, MIT
2002-2005 AMAX Assistant Professor, MIT
2001-2002 Assistant Professor, MIT
1999-2001 Research Staff, Princeton University
1998-1999 Research Scientist, Naval Research Laboratory
1996-1998 NSF Postdoctoral Fellow, Rutgers University
1993-1996 EU Doctoral Fellow, Cambridge University (PhD, Physics)
1992 Laurea in Physics, *summa cum laude*, University of Trieste

Five most relevant papers of Nicola Marzari during the last five years

1) M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari,
 Electronic-enthalpy functional for finite systems under pressure,
2) Y.-S. Lee, M. Buongiorno Nardelli, and N. Marzari,
 Electronic-structure and quantum conductance of nanostructures from maximally-localized
 Wannier functions: the case of functionalized nanotubes,
 PHYSICAL REVIEW LETTERS 95, 076804 (2005).
3) B. Kozinski and N. Marzari,
 Static dielectric properties of carbon nanotubes from first principles,
4) H.-L. Sit, M. Cococcioni, and N. Marzari,
 Realistic, quantitative descriptions of electron-transfer reactions: diabatic surfaces
 from first-principles molecular dynamics,
 PHYSICAL REVIEW LETTERS 97, 028303 (2006).
5) H. J. Kulik, M. Cococcioni, D. A. Scherlis, and N. Marzari,
 Density-functional theory in transition-metal chemistry: A self-consistent
 Hubbard U approach,
CV of Alfredo Pasquarello

2003 Associate Professor EPF-Lausanne, Switzerland
1999 Professeur Boursier of Swiss NSF (with tenure track at EPFL)
1998 Fellowship of Swiss NSF
1993 Post-doc IRRMA Lausanne
1992 Post-doc AT&T Bell Laboratories
1991 Dr es sciences, EPF-Lausanne, Switzerland
1986 Diploma Scuola Normale Superiore, Pisa, Italy
1986 Laurea, University of Pisa, Italy

Five most relevant papers of Alfredo Pasquarello during the last five years

1) Pasquarello A, Petri I, Salmon PS, Parisel O, Car R, Toth E, Powell DH, Fischer HE, Helm L, Merbach AE,
 First solvation shell of the Cu(II) aqua ion: Evidence for fivelfold coordination,
2) Umari P, Pasquarello A,
 Ab initio molecular dynamics in a finite homogeneous electric field,
 PHYSICAL REVIEW LETTERS 89, 157602 (2002).
3) Bongiorno A, Pasquarello A,
 Oxygen diffusion through the disordered oxide network during silicon oxidation,
 PHYSICAL REVIEW LETTERS 88, 125901 (2002).
4) Giustino F, Umari P, Pasquarello A,
 Dielectric discontinuity at interfaces in the atomic-scale limit:
 Permittivity of ultrathin oxide films on silicon,
 PHYSICAL REVIEW LETTERS 91, 267601 (2003).
5) Bongiorno A, Pasquarello A, Hybertsen MS, Feldman LC,
 Transition structure at the Si(100)-SiO2 interface,
 PHYSICAL REVIEW LETTERS 90, 186101 (2003).

CV of Ivo Souza

2003-Present Assistant Professor of Physics, University of California Berkeley, USA
2000-2003 Post-doc, Rutgers University, New Jersey, USA
1995-2000 PhD in Physics, University of Illinois at Urbana-Champaign, USA
1990-1995 Licenciatura in Engineering Physics, Universidade Técnica de Lisboa, Portugal

Five most relevant papers of Ivo Souza during the last five years

1) Ivo Souza, Nicola Marzari, and David Vanderbilt,
 Maximally-localized Wannier functions for entangled energy bands,
 PHYSICAL REVIEW B 65, 035109 (2002)
2) Ivo Souza, Jorge Iniguez, and David Vanderbilt,
 First-Principles Approach to Insulators in Finite Electric Fields,
 PHYSICAL REVIEW LETTERS, 89, 117602 (2002).
3) Ivo Souza, Jorge Iniguez, and David Vanderbilt,
 Dynamics of Berry-phase polarization in time-dependent electric fields,
 PHYSICAL REVIEW B 69, 085106 (2004).
4) Xinjie Wang, Jonathan R. Yates, Ivo Souza, and David Vanderbilt,
Ab-initio calculation of the anomalous Hall conductivity by Wannier Interpolation,
(submitted to PHYSICAL REVIEW B, preprint cond-mat/0608257).
5) Feliciano Giustino, Jonathan R. Yates, Ivo Souza, Marvin L. Cohen, and Steven G. Louie,
Electron-Phonon Interaction via Electronic and Lattice Wannier functions:
Superconductivity in Boron-Doped Diamond Reexamined,
(submitted to PHYSICAL REVIEW LETTERS).

PROVISIONAL LIST OF PARTICIPANTS AND SPEAKERS

1 Ole K. Andersen
oka@fkf.mpg.de
Max Planck Institute for Solid State Research, Stuttgart, Germany
confirmed participant

2 Christian Brouder
christian.brouder@impmc.jussieu.fr
Universites Pierre et Marie Curie, Paris, France
confirmed participant

3 Marco Buongiorno Nardelli
mbnardelli@ncsu.edu
North Carolina State University, Raleigh, USA
confirmed participant

4 Roberto Car
rcar@princeton.edu
Princeton University, New Jersey, USA
confirmed participant

5 Stefano de Gironcoli
degironc@sissa.it
SISSA, Trieste, Italy
confirmed participant

6 Oswaldo Dieguez
dieguez@physics.rutgers.edu
Rutgers University, New Jersey, USA
confirmed participant

7 Andrea Ferretti
ferretti.andrea@unimore.it
Univ. Modena e Reggio Emilia, Italy.
confirmed participant

8 Karsten W. Jacobsen
kwj@fysik.dtu.dk
Technical University Denmark, Lyngby, Denmark
9 Feliciano Giustino
giustino@civet.berkeley.edu
University of California, Berkeley, USA
confirmed participant

10 Francois Gygi
fgygi@ucdavis.edu
University of California, Davis, USA

11 Wei Ku
weiku@bnl.gov
Brookhaven National Laboratory, New York, USA
confirmed participant

12 Frank Lechermann
frank.lechermann@cpht.polytechnique.fr
École Polytechnique, Palaiseau, France
confirmed participant

13 Young-Su Lee
lee0su@mit.edu
Department of Materials Science and Engineering, MIT

14 Steven G. Louie
sglouie@berkeley.edu
University of California, Berkeley, USA
confirmed participant

15 Nicola Marzari
marzari@mit.edu
Massachusetts Institute of Technology, Boston, USA
confirmed participant

16 Arash A. Mostofi
mostofi@delete-this.mit.edu
Massachusetts Institute of Technology, Boston, USA
confirmed participant

17 Joerg Neugebauer
neugebauer@mpie.de
Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany
confirmed participant

18 Alfredo Pasquarello
alfredo.pasquarello@epfl.ch
EPF-Lausanne, Switzerland
confirmed participant

19 Michel Posternak
michel.posternak@epfl.ch
EPF-Lausanne, Switzerland
confirmed participant

20 Raffaele Resta
resta@democritos.it
University of Trieste, Italy
confirmed participant

21 Massimiliano Stengel
stengel@mrl.ucsb.edu
University of California, Santa Barbara, USA
confirmed participant

22 Ivo Souza
isouza@berkeley.edu
University of California, Berkeley, USA
confirmed participant

23 Timo Thonhauser
timo.thonhauser@rutgers.edu
Rutgers University, New Jersey, USA
confirmed participant

24 Mark E. Tuckerman
mark.tuckerman@nyu.edu
New York University, USA
confirmed participant

25 Paolo Umari
umari@democritos.it
INFM Democritos, Trieste, Italy
confirmed participant

26 David H. Vanderbilt
dhv@physics.rutgers.edu
Rutgers University, New Jersey, USA
confirmed participant

27 Jonathan R. Yates
jry20@cam.ac.uk
Cambridge University, UK
confirmed participant

28 Oleg V. Yazyev
oleg.yazyev@epfl.ch
EPF-Lausanne, Switzerland
REFERENCES

[1] Marzari N, Vanderbilt D
Maximally localized generalized Wannier functions for composite energy bands
PHYSICAL REVIEW B 56, 12847 (1997).

An introduction to maximally-localized Wannier functions,
Highlight of the Month, Psi-K Newsletter 57, 129 (2003),
http://psi-k.dl.ac.uk/psi-k/newsletters.html.

[3] Silvestrelli PL, Marzari N, Vanderbilt D, Parrinello M
Maximally-localized Wannier functions for disordered systems: Application to amorphous silicon
SOLID STATE COMMUNICATIONS 107, 7 (1998).

[4] Silvestrelli PL, Parrinello M
Structural, electronic, and bonding properties of liquid water from first principles

Ab initio study of the dielectric properties of silicon and gallium arsenide using polarized Wannier functions
PHYSICAL REVIEW B 58, R7480 (1998).

[6] Souza I, Martin RM, Marzari N, Zhao XY, Vanderbilt D
Wannier-function description of the electronic polarization and infrared absorption of high-pressure hydrogen

Maximally localized Wannier functions in antiferromagnetic MnO within the FLAPW formalism
PHYSICAL REVIEW B 65, 184422 (2002).

Electronic structure characterization of six semiconductors through their localized Wannier functions
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 5, 5319 (2003).

Born charge differences of TiO2 polytypes: Multipole expansion of Wannier charge densities
PHYSICAL REVIEW B 69, 121101 (2004).

[10] Kirchner B, Hutter J
Solvent effects on electronic properties from Wannier functions in a dimethyl sulfoxide/water mixture
Decomposing total IR spectra of aqueous systems into solute and solvent contributions: A computational approach using maximally localized Wannier orbitals

Intermolecular dynamical charge fluctuations in water: A signature of the H-bond network
PHYSICAL REVIEW LETTERS 95, 187401 (2005).

Dielectric discontinuity at interfaces in the atomic-scale limit: Permittivity of ultrathin oxide films on silicon
PHYSICAL REVIEW LETTERS 91, 267601 (2003).

[14] Giustino F, Pasquarello A
Theory of atomic-scale dielectric permittivity at insulator interfaces

Accurate polarization within a unified Wannier function formalism
PHYSICAL REVIEW B 73, 075121 (2006).

[16] Wu X, Dieguez O, Rabe KM, Vanderbilt D
Wannier-based definition of layer polarizations in perovskite superlattices
PHYSICAL REVIEW LETTERS 97, 107602 (2006).

[17] Stengel M, Spaldin NA
Ab-initio theory of metal-insulator interfaces in a finite electric field cond-mat/0511042.

[18] Sebastiani D, Parrinello M
A new ab-initio approach for NMR chemical shifts in periodic systems

Orbital magnetization in periodic insulators
PHYSICAL REVIEW LETTERS 95, 137205 (2005).

[20] Ceresoli D, Thonhauser T, Vanderbilt D, Resta R
Orbital magnetization in crystalline solids: Multi-band insulators, Chern insulators, and metals
PHYSICAL REVIEW B 74, 024408 (2006).

[21] Yazyev OV, Pasquarello A
Origin of fine structure in Si 2p photoelectron spectra at silicon surfaces and interfaces

[22] Skylaris CK, Mostofi AA, Haynes PD, Dieguez O, Payne MC
Nonorthogonal generalized Wannier function pseudopotential plane-wave method
PHYSICAL REVIEW B 66, 035119 (2002).
[23] Wahn M, Neugebauer J
Generalized Wannier functions: An efficient way to construct
ab-initio tight-binding parameters for group-III nitrides

[24] Schnell I, Czycholl G, Albers RC
Hubbard-U calculations for Cu from first-principle Wannier functions
PHYSICAL REVIEW B 65, 075103 (2002).

[25] Schnell I, Czycholl G, Albers RC
Unscreened Hartree-Fock calculations for metallic Fe, Co, Ni, and Cu from ab initio
Hamiltonians
PHYSICAL REVIEW B 68, 245102 (2003).

Fabris S, de Gironcoli S, Baroni S, Vicario G, Balducci G
Taming multiple valency with density functionals: A case study of defective ceria
PHYSICAL REVIEW B 71, 041102 (2005).

[27] Zurek E, Jepsen O, Andersen OK
Muffin-tin orbital Wannier-like functions for insulators and metals
CHEMPHYSCHEM 6, 1934 (2005).

[28] Buth C, Birkenheuer U, Albrecht M, Fulde P
Ab initio Green's function formalism for band structures
PHYSICAL REVIEW B 72, 195107 (2005).

[29] Yin W-G, Volja D, Ku W
Orbital Ordering in LaMnO3: Electron-Electron versus Electron-Lattice Interactions
PHYSICAL REVIEW LETTERS 96, 116405 (2006).

First-principles Calculation of Effective Onsite Coulomb Interaction of 3d Transition Metals:
Constrained Local Density Functional Approach with Maximally Localized Wannier
Function
cond-mat/0510425.

[31] Lechermann F, Georges A, Poteryaev A, Biermann S, Posternak M, Yamasaki A,
Andersen O K
Dynamical mean-field theory using Wannier functions: a flexible route to electronic structure
calculations of strongly correlated materials
cond-mat/0605539.

[32] Souza I, Marzari N, Vanderbilt D
Maximally localized Wannier functions for entangled energy bands
PHYSICAL REVIEW B 65, 035109 (2002).

[33] Thygesen KS, Hansen LB, Jacobsen KW
Partly occupied Wannier functions

[34] Thomas JW, Iftimie R, Tuckerman ME, Birkenheuer U, Izotov D
Localization of Wannier functions for entangled energy bands
PHYSICAL REVIEW B 71, 125116 (2005).

Partly occupied Wannier functions: Construction and applications
PHYSICAL REVIEW B 72, 125119 (2005).

Ab initio transport properties of nanostructures from maximally
localized Wannier functions
PHYSICAL REVIEW B 69, 035108 (2004).

[37] Lee YS, Nardelli MB, Marzari N
Band structure and quantum conductance of nanostructures from maximally localized wannier
functions: The case of functionalized carbon nanotubes
PHYSICAL REVIEW LETTERS 95, 076804 (2005).

[38] Thygesen KS, Jacobsen KW
Molecular transport calculations with Wannier functions
CHEMICAL PHYSICS 319, 111 (2005).

Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation
cond-mat/0608257.

[40] Giustino F, Yates JR, Souza I, Cohen ML, Louie SG
Electron-phonon interaction via electronic and lattice Wannier functions: Superconductivity
in boron-doped diamond reexamined
PHYSICAL REVIEW LETTERS, submitted.

[41] Giustino F, Pasquarello A
Mixed Wannier-Bloch functions for electrons and phonons in periodic systems

Exponential localization of Wannier functions in insulators
cond-mat/0606726.

[43] He LX, Vanderbilt D
Exponential decay properties of Wannier functions and related quantities
PHYSICAL REVIEW LETTERS 86, 5341 (2001).

[44] Sharma M, Wu YD, Car R
Ab initio molecular dynamics with maximally localized Wannier functions
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 95, 821 (2003).

Field theoretic approach to dynamical orbital localization in ab initio molecular dynamics
PHYSICAL REVIEW B 69, 125105 (2004).

[46] Iftimie R, Thomas JW, Tuckerman ME
On-the-fly localization of electronic orbitals in Car-Parrinello molecular dynamics

[48] Silvestrelli PL
Maximally localized Wannier functions for simulations with supercells of general symmetry
PHYSICAL REVIEW B 59, 9703 (1999).

General and efficient algorithms for obtaining maximally
localized Wannier functions
PHYSICAL REVIEW B 61, 10040 (2000).

Computation of Maximally Localized Wannier Functions using a simultaneous
diagonalization algorithm

[51] Maximally localized Wannier functions from PAW or ultrasoft pseudopotentials
Ferretti A, Calzolari A, Bonferroni B, Di Felice R
cond-mat/0603256.

[52] Whittaker DM, Croucher MP
Maximally localized Wannier functions for photonic lattices